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1. INTRODUCTION

The purpose of this thesis is to demonstrate the feasibility of
studying human relations by the techniques of Systems Analysis and Com-
puter Simulation.1 Two simple models are developed. Computer simulation
experiments are conducted using the models. The results are interpreted
in terms of observed human behavior patterns.

Human relations applies to the interaction of persons in a variety

of encounters. Sociocybernetics is the application of cybernetic prin-

ciples to a systems analysis of social structures. The GENESIS MODEL is

a computer simulation of Human Relations.

THE PROBLEM

The problem which originally interested the author was the control
' of strife as a necessity for survival. The study of strife or of any
other factor which produces entropy within the humaﬁ social system must
include some model which can be subjected to a systems analysis. The
model should be capable of simulation before the event occurs, that is,

in the real time.

THE PROCEDURE

The procedure, SOCIOCYBERNETICS, is a systems approach, applying

cybernetic principles to social organization. Essentially this technique

1For customary background review of the literature, read Appendix A
first.



is a bridge between the analytical tools of the physical scientist and
the concerns of the behaviorial scientist.

"Simulation is a technique for conducting experiments on a com-
puter which involves certain types of mathematical and logical models
that describe the behavior of a system (or some component therecf)

over extended periods of time."2

THE EXPERIMENTS

Two models are developed for experimental analysis:
a) A discrete System: GENESIS MODEL ONE

b) A continuous System: GENESIS MODEL TWO

2Skramstad, Harold K., "Computer Simulation Models," unpublished
Industrial Engineering 572 class notes, University of Miami, Spring 1970.



2. EXPERIMENT ONE: THE DISCRETE MODEL

The System Analysis of Human Relations which suggests the new
subject of SOCIOCYBERNETICS, has resulted in the design of a computer
simulation model of human interaction. The model has a name: GENESIS
which could mean either "first model" or "GENeral Environmental Simula-

tion In Society."

Postulates concerning human relations used in the design are:3

POSTULATE ONE: The interaction of human beings is describable as a

dynamic system. That is, Human Relations is a function of the nature

of each person, the way in which persons are interrelated, the initial

condition of each person and the kinds of inputs into the system.

POSTULATE TWO: A finite state automaton is the model of the human. The
' simplest meaningful model includes two internal states and two external
states. Let us say that a person could be either "ﬁappy" or "sad" and
that he can perceive his environment as either "good'" or '"bad."

Much of life is in terms of a two-state feeling or response. 'How
do you feel?" "OK" or "Not so good." What sort of review did the new
movie receive, "favorable" or "unfavorable.” And on to the rather ulti-
mate question: YAlive?", "Dead?" Admittedly there may be many shades
of feelings and perceptions, but in the first model by using only two

states such as "happy" and "sad", there is no loss of generality in

3A detailed description of the Discrete Model is included in Appen-
dix B. '



princip1e§ subsequent refinements of the model can provide for as many
gradations of feeling as desired within the present theory.

The next fact to which we address ourselves is how a person responds
to a given input and what sort of output he gives. The model design
allows for all possible combinations within its parameters.

From the definition of a finite state automaton, a person's behavior

is describable by a pair of matrices; an example is Table 1.

Table 1
THE MAN
\ NPUT INPUT
GOOD POOR GOOD POOR
STATE‘\ STATE
HAPPY +1 +1 HAPPY +1 -1
SAD +1 -1 SAD - | -1
OUTPUT NEW STATE

The above model says in effect that, for instance, if the person is
in a happy internal state, and is in a good environment, that he will move
into a happy next state and give off a good response to the other pérson.
Or for instance, if at this moment in time he is in a sad internal state
and is receiving a good input from his environment, he will give a posi-

tive output but will move into a sad internal state. This might describe
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a person Who is "laughing on the outside but crying on the inside." He
makes a continual effort to give off good outputs, vibrations, even under
‘adverse conditions, but it takes something out of him and he tends more
often to be inwardly saddened.

Designing a man then becomes a process of determining how he gives
outputs under certain conditions and how he moves into his next state.
Essentially this is done by placing plus one or minus one in each of the
four cells in each of the two matrices. A person may conceivably have
all pluses and be a complete "manic' individual; another may conceivably
have all minuses, and thus be completely ''catatonic.'" There are 256 dif-

ferent combinations possible in this design.

POSTULATE. THREE:  The interconnections between persons can be described

by a connection matrix.

The model, while any arrangement is possible, assumes that the
total output of the woman is perceived by the man as his input and vice

- versa.

NUMBER OF SYSTEMS POSSIBLE

(Designs of Man) X (Designs of Woamn): 256 X 256 = 65,536

This simplest of models thus allows for a surprising diversity of behavior.

THE SYSTEM INPUT

In the first simulations we are assuming no input. Rather, the
system is a function of its initial conditions. We could look at it this
way: The wife has had a certain kind of day--maybe a good one (she won

the rubber at afternoon bridge); or a bad day (the waterbed sprung a



leak just after lunch). Her husband has had a good day at the office
or it was one of those hectic days. The husband comes into the house
shuts the door. He and his wife now interact, each bringing as his
initial condition the way things are at that moment. The door is shut,
the doorbell is disconnected, as is the telephone and the TV: i.e.,
there are no inputs. What happens? In their black box the simulation
proceeds.

There are 16 possible starting conditions, ranging from both per-
sons having a bad environment and a sad feeling to both having a good

environment and feeling happy.

EXPERIMENT 1-A

TWO PERSONS SIMULATION OF A MAN AND WOMAN

The simulation of a two person system with the man as already
described, and with a woman who tends to complain quite often but is

_feeling happy after her fussing as shown in Table 2, is analyzed here.

Table 2
THE WOMAN
INPUT INPUT
GOOD POOR GOOD POOR
STAT STATE\\\
HAPPY +1 -1 HAPPY +1 +1
SAD -1 -1 SAD +] -1

OUTPUT NEW STATE
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The simulation is run for all different sixteen Initial Conditions.-4
One can make the following interpretations:
1. Whether relationship reaches a steady state, or results in
a cycle, and thus in a given time period, repeats itself.5
2. Other measurements are
a. The Strife IndexX of the system.
b. Whether or not the resultant from any given initial
condition results in an acceptable or unacceptable

state, and the fractional total of acceptable states.

The strife index takes into account both internal states and out-
puts; the acceptability index takes into account only internal states.

Inferences. that one can draw from this simulation indicate a strife
index which is low enough so that there could possibly be a large number
of acceptable situations; for acceptability of a system occurs when both
persons feel happy more than half of the time. However, there is only
one possible initial condition in this simulation whose results are
acceptable, the steady state that results if both persons start in a good
mood and in a good environment. Only from this ini£i31 condition does
the man feel "Happy'. His efforts to input good feelings into his wife
are apparently successful because the simulation results indicate she
always feels happy. Given the design of these two persons the result is
a feasible description of the relations between these two humans. The
person who "lets off steam'" may feel good afterward and the person who at
some personal effort tries to put forth good feelings, may tend more often

to feel sad afterward. How much does it cost one to put on a brave front?

4See Appendix B-7 for computer output.

5See Appendix B-2 for method of output result computations, such as,
definition of Strife Index.



EXPERIMENT 1-B

AN EXAMPLE OF THE MODEL APPLIED TO COUNSELING

Average Andy is in love with six girls. Whom should he marry? A
simulation is made of possible results. Andy's friends are described

below from a computer printout of their personality matrices.
ADORABLE ANNIE, because she is just like Andy, responds in a normal way

to each situation.

Table 3

ADORABLE ANNIE

INPUT \QPUT
GOOD POOR GOOD POOR
STATE STATE \\
HAPPY . 1 1 HAPPY 1 1
SAD -1 -1 SAD -1 -1
OUTPUT NEW STATE

ECCENTRIC ELLEN, interesting because she is exactly opposite to Andy.



Table 4

ECCENTRIC ELLEN

INPUT INPUT
GOOD POOR GOOD POOR
STATE STATE
HAPPY -1 -1 HAPPY -1 -1
SAD 1 1 SAD 1 1
OUTPUT NEW STATE
HAPPY HELEN tends most often to be in a happy state.
Table 5
HAPPY HELEN
INPUT INPUT
GOOD POOR GOOD POOR
STA STATE
HAPPY 1 1 HAPPY 1 1
SAD -1 -1 SAD 1 -1




SAD SADIE carries too many worries and most often is sad.

10

Table 6
SAD SADIE
INPUT INPUT
GOOD POOR GOOD POOR
STATE\\\ STATE
HAPPY 1 1 HAPPY 1 -1
SAD -1 -1 SAD -1 -1
OUTPUT NEW STATE
~ BUBBLY BETTY gives out a lot of good output.
Table 7
BUBBLY BETTY
INPUT INPUT
GOOD POOR GOOD POOR
STATE\\ ' STATE
HAPPY 1 1 ~ HAPPY 1 1
SAD 1 -1 SAD -1 -1
OUTPUT NEW STATE
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GRUMPY GERTRUDE does a lot of nagging.

Table 8

GRUMPY GERTRUDE

INPUT | Goop POOR INPUT)* Goop POOR
STATE. | STATE
HAPPY 1 -1 HAPPY 1 1
SAD -1 -1 SAD -1 -1
OUTPUT NEW STATE

Table 9

SIMULATION ANALYSIS FOR AVERAGE ANDY'S GIRL FRIENDS

SYSTEM NUMBER OF ACCEPTABILITY
STRIFE ACCEPTABLE INDEX
GIRL (smaller the better) | INITIAL CONDITIONS | (larger the better)

Adorable Annie .500 4 .250

Eccentric Ellen .500 0 0

|Happy Helen .313 8 .500

Sad Sadie .688 2 .125

Bubbly Betty .438 4 .250

Grumpy Gertrude .563 4 .250
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of coﬁrse, contrary to the common assumption that in marriage one
will make over his (or her) partner, we have assumed that this just
isn't so. This simple experiment, summarized in Table 9, suggests some
facts about life. An old saying is that 'opposites attract.'" This may
be true, and though the simulation with Ellen does not produce the most
strife-ridden relationship, it has no possibility of being acceptable to
both partners at the same time. An analysis of the three relationships
which each produce 4 acceptable situations: (a) the one with the least
strife is with Betty who tries hardest to give good outputs to Andy;
(b) Annie, the girl just like Andy, produces thus a strife of .500; (c)
the Strife Index is highest with Grumpy Gertrude even though she has the
same Acceptability Index as Betty and Annie. The highest strife situa-
tion is with Sad Sadie which indicates that the internal state has the
greatest effect on the relationship-- even more so than the output; this
is confirmed with the fact that Andy's best bet is to consider Happy
He}en, who is not so bubbly as Betty. He doubles his chances for an

acceptable marriage because of her positive inner state.

EXPERIMENT 1-C

THE EFFECT OF TRANSFORMATION OF NEGATIVE INTERNAL STATE ELEMENTS AND

THE REDUCTION OF STRIFE TO THE ACCEPTABILITY OF A HUMAN RELATION SYSTEM

A model is used which has three states and three environments a;
person may be "happy", 'neutral' or '"sad"; his outputs may be ''good",

"neutral' or "poor."
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In this simulation the Man (Table 10) tends to give off good out-
puts but he is most often in a sad mood. The woman (Table 11) has a
‘trend of negative outputs, but she has a very happy internal state.

We assume that her model is held constant during the simulation.

Table 10

MODEL FOR SAD MAN

ENVIRONMENT ENVIRONMENT
STATE GOOD NEUT POOR STATE GOOD NEUT POOR
HAPPY 1 1 1 HAPPY 1 0 0
NEUT 1 1 0 NEUT 0 -1 -1
SAD 1 0 -1 SAD -1 -1 -1
OUTPUT NEW STATE
Table 11
MODEL FOR WOMAN
ENVIRONMENT ENVIRONMENT
STATE GOOD NEUT POOR STATE GOOD NEUT POOR
HAPPY 1 0 -1 HAPPY 1 1 1
NEUT 0 -1 -1 NEUT 1 1 0
SAD - -1 -1 -1 SAD 1 0 -1
OUTPUT NEW STATE
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Our procedure is: in order, replace each of the man's negative
internal states by a neutral condition, until all his negative traces
are removed. Then start a process of replacing a neutral internal
state by a positive state. There were eight runs of the system for a
total 648 simulations. The man moved from 5 negative positions and one
positive in his internal state to no negatives and three positives. A

sample simulation is illustrated by Table 12.
Table 12
A SAMPLE THREE STATE SIMULATION

INITIAL CONDITION NUMBER: 18

FIRST LINE IS THE INITIAL CONDITION

1 0 -1 -1
0 -1 -1 1
-1 -1 -1 0
-1 0 1 -1
-1 -1 -1 0

THE LAST 2 LINES FORM A CYCLE
UNACCEPTABLE CYCLE
STRIFE INDEX = 0.625



We have used the same measure of strife and acceptability as in

the two state system, with simulation results described in Table 13.

Table 13

SIMULATION RESULTS OF STRIFE DECREMENT EXPERIMENT

SYSTEM

NUMBER OF ' SYSTEM NUMBER CYCLES STEADY
NUMBER MAN'S STRIFE ACCEPTABLE STATES
NEGATIVES SITUATIONS

1 5 .414 1 38 43
2 4 .355 1 35 46
3 3 .199 1 14 67
4 2 .131 1 5 76
5 1 .059 1 0 81
6 0 .000 1 0 81
7 add +1 .000 6 0 81
8 add +1 .000 27 0 81
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The empirical observation is that as we lower a man's inner nega-
tive feelings, there is a steady decrease in the strife level of the
system: the number of acceptable situations does not increase with the
lowering of strife, when the lowering results from simply moving a
person into a 'meutral position.'" Acceptability increases only as there
are increasing positive elements.

The suggestions for experimental application and development are
richly suggestive here. It would appear obvious that a mere reduction
of negative feelings may simply result is a submissive individual in
vhich there is still no positive acceptance of the system results. Of
course the implications of this observation in real life are signifi-
cant. Just to neutralize a relationship, to remove strife, may show a
significant lowering of the strife index, with no improvement of the
acceptability.. a tranquilized patient or a subservient person may have
a low strife index... but is this what really constitutes optimal human

relations?

OBSERVATION

The discrete system is feasible as a means of simulating human
behavior. The system can be expanded to include more than two states:
we have demonstrated this for three states. It can also be expanded to
include more than two persons.

Further development could include the important factors of "input"
and "self-feedback", which can of course be incorporated in the design
of the connection matrix, stochastic inputs and component reactions, etc.

In addition, while from a heuristic view the feasibility of the approach
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is established, an important next step in the analysis would be valida-

tion of the model in real life situations.



3. EXPERIMENT TWO: THE CONTINUOUS MODEL

The discrete model, GENESIS ONE, made the assumption that human
behavior moved in discrete units of time. The continuous model,
GENESIS TWO, makes the alternate assumption that humans move continu-
ously from one condition to another.

The following postulates are made concerning GENESIS ™o : ©

POSTULATE ONE: The INTERNAL STATE

I-A: A person's mood does not change without a cause. This

is the principle of "MOOD INERTIA".

I-B:  The internal state, happy or sad, tends to change in the
same sense as the input from other person.
Examples: "You catch more flies with honey than
vinegar.”

"Butter up the boss.", etc.

I-C: The internal state of a person tends to change in the oppo-
site sense of the input from self.
Example: '"Blowing off steam sure makes a fellow feel

better.", etc.

6See Appendix C-2 for a mathematical discussion of the model.

18
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POSTULATE TWO: The OUTPUT

II-A: The output tends to change in the same sense as the internal
state.
Example: "A happy mood tends to produce pleasant

outputs,”

POSTULATE THREE: BOUNDEDNESS

III-A: The person can get just so happy or sad, and give off just
so much bad or good feelings. That is, all variables are

bounded, which for simplicity we normalize to # - %l.

The continuous model consists of two persons, each of whom is
described by two differential equations, one for his internal state
(happy-sad) and one for his outputs (good-bad). These equations are:

2
(-alzem + a146f)(1 - Sm )

2
"

\i - 2
o = (a,S)(1 - 6 %)

(a,.6 6.)(1 - 8.2
e = (838 - ag0.)(1 - 5g)

e = (34550 - efz)

2
"

Where:
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S 1is the Man's Internal State
6 is the Man's Output

Sf is the Woman's Internal State

6f is the Woman's Output

! = time derivative

The entire infinite range of possibilities can in a qualitative

sense be described by six different couples.

1. A strongly coupled system in which

a) the man is most dominant (Man's Output has greatest effect

on both), or
b) the woman is most dominant, or

c) nelither is dominant, but each is most effected by the

other's output.

2. A weakly coupled system in which

a) each person is most effected by man's output, or
b) each person is most effected by woman's output, or

c¢) each is most effected by his own output.

The significance of this classification in respect to the numerical
values of the aijis elucidated in Appendices C-6 and C-7. The above
system of human relations has been subjected to a phase space analysis
(which is described in Appendix C) The Boundedness of the system implies
that the entire action takes place within a tesseract, or a four dimensional

cube.
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Two of the qualitatively different couples have been selected for

an analysis.

EXPERIMENT 2-A

SIMULATION WEAKLY COUPLED TWO PERSON SYSTEM

The couple has a weak relationship (the system is weakly coupled)
and each is most effected by his own output. For instance, picture a
breakfast table. Some sort of conversation is going on. He talks about
the results of last night's baseball game as he reads the paper and she
chats about the bridge luncheon on today's agenda. If time could stop
at a moment and each were asked what the other had said, a rather in-
complete response would occur.

To illustrate what takes place in such a system, one might look
at the neighborhood of the origin in phase space. At this point, both
persons are in a neutral condition. As time progresses the following
~action tékes place: the man starts to move to a happy state, the woman

starts to move to a sad state. Graphs illustrate this:

0 S - £ %
/ \\ / / \
- ¥ / — l | >
¥ 7
U /, Time y // \\
~ // —

— ~

Man Woman

Figure 1  Graphical illustration of a continuous system
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In fact this could be pictured as a single graph with all four
conditions listed on it. A large analogue computer could be used to
make such a print out for every possible quantitative value that would
hold for this given situation. However, with the use of phase space
analysis, it is not necessary to run all situations, for the analysis
will indicate what takes place, over time, for every given initial con-

dition, based on what takes place for certain key, or critical situations.
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Figure 2 A weakly coupled system with each person most affected by his
own output. This is Experiment 2-A, Case 3, Appendix C-7, out

of phase oscillation of frequency 2 cycles per unit time.

A = -2i and eigenvector = (1,0,-2,0)
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Figure 3 A weakly coupled system with each person most affected by his
own output, This is Experiment II-1, Case 3, Appendix C-7

within phase oscillation of frequency, 1 cycle per unit time.

A = -i and eigenvector = (1,0,1,0)
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Experiment 2-A indicates that an analysis of the action at the
origin clearly shows the weak interconnection between the two persons

‘and how each is most effected by his own output.

There are thus two pure modes of behavior in the neighborhood of
the origin; one of frequency 2 cycles per unit time, with the persons
out-of-phase (one is up while the other is down), and one of frequency
1 cycle per unit time, with the persons in-phase (both up or both down
together). All possible complex behavior patterns are different com-

binations of these two fundamental modes.

EXPERIMENT 2-B

SIMULATION OF A STRONGLY COUPLED SYSTEM

The second (qualitatively distinct) couple that is examined is one
in which very strong interrelations exist; it is strongly coupled, with
each person most effected by the man's output. One description in clas-
sical terms is: the man is extrovert, the woman introvert. Another
description is: the man is dominant (the classification is not just
qualitative, its quantitative meaning in respect to the numerical values
of the aij is explicated in Appendix C-7). An example of the results of

this analysis is shown in Figure 4, and 5.



MAN

26

MAN
State: Sad State: Happy
Output: Good 6 Output: Good
Vertex #8 7 Vertex #16
< <
¥ A
stable
\_ N limit
cycle
/
-sm N +Sm
Origin
4 A
> >-
Vertex #4 -am Vertex #12
State: Sad State: Happy
Output: Poor " Qutput: Poor
Figure 4

A Strongly Coupled System in neighborhood of origin
Experiment 2 -A;

Each person most effected by Man's Output (Case 1
in Appendix C-7)
The graph illustrates the trajectory of the man where the woman's condi-

tion is happy with a good output at each vertex; one system behavior moves

away from origin along the unstable eigenvector (1,1,3,3), and into a stable

limit cycle for the man in the plane'sf =1, ef = 1. See Appendix C-11 for

numbering of the vertices of the tesseract.
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Each graph in Figure 2 is the plotting of two of the possible
states with time as the running parameter. Since it is somewhat
-difficult to draw four dimensional space in two dimensions, though
we do represent three dimensional space of two dimensions, i.e., a
sphere, or cone, or cube on a piece of paper, we have to make several
graphs to depict all results at one place, overtime. There can be a
variety of comparisons, depending upon the results one wishes to study.
For instance in Figure 2-a, we note that as time goes on, the man
begins with no negative state, but rather rapidly reaches a sad state,
though he continues to give out good outputs for a time; then at the
bottom point, when the man is as unhappy as he can possibly be, he
gives bad outputs, but the more bad outputs he gives, the better he
starts to feel "letting off steam' until eventually at time 2.25 he
feels neutral and then starts to feel happier, though still giving off
bad outputs. This circular pattern continues for the man. A like
pattern developes for the woman, though her magnitude of happiness,
sadness is different. Figure 2-c indicates that while the man is happy
the woman is sad; i.e., the oscillations are out of phase. The oscil-
latory behaviors for each person are 180° out of phase, as indicated

by the straight lines in the second and fourth quadrants.

A weakly coupled system where each is most effected by his own
self-feedback could likewise have the following simulatioﬁs in the
neighborhood of the origin, both the man and the woman begin to move
into a happy state, each giving off good outputs. The results indicate
that now they are in phase; when one is happy, so is the other, and con-

versely. Figure 3 illustrates the behavior.
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We can intrepret the Graph of the Phase Space Analysis, Figure 4,
to mean that this is what happens if the woman's initial condition is
-good and her output is good. The man (if he starts at a completely
neutral point), moves into a cycle in which his parameters represent
good outputs, and moving in a cycle that is sometimes a happy state
and sometimes sad, but never extremely happy or sad. Likewise, one
can see what will happen if man starts with any of the possible shades
of feeling very good, very sad, giving negative outputs or good ones.
The arrows around the bounding edges indicate the limitiﬁg pattern of

his State and output.

The next example is of the same situation, put in this case the
woman is in a negative state and has a good output, Figure 5. The man,
contrary to moving into a spiral over time, given enough time will tend
to reach a steady state at the origin of the tesseract, which represents

a neutral state and output.



29
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Figure 5

A Strongly Coupled System in neighborhood of origin

Each person most effected by Man's Output (Case 1

in Appendix C-7)

Experiment 2-B.
Figure 5 illustrates the trajectory of the man's state and output with
time as the running parameter. The man has an unstable limit cycle in
the plane Sf = -1, ef = 1. Behavior trajectories spiral away from this
limit cycle toward the origin, approaching along the stable eigenvecter

(-1,1,-3,3).
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In like manner, the other qualitative cases can be examined. An
entire set of plates can be constructed to show the simulation results.
It is only necessary to produce graphs for these cases; because of the
nature of phase space analysis, all other cases which include an infinite
number of possibilities can have their behavior deduced by use of the
proper phase space graphs. In other words, once one has established the
fact that a system is, for instance strongly coupled, and one in which
the output of the woman (rather than the man) most affects both the man
and the woman; the use of the phase space analysis graphs will indicate
the behavior of that system when started with any given set of initial

conditions.

RESULT OF EXPERIMENT TWO

The phase space analysis demonstrates the feasibility of a systems
analysis using computer simulation models of a continuous system for

the studf of human relations.



4. CONCLUSION

Sociocybernetics, a Systems Analysis using Computer Simulation, is
a useful new tool in the analysis of human social relations. The GENESIS
MODELS can be expanded to represent with increasing accuracy human rela-
tions and expanded to include more than two persons. These are not
computer models of a human being; rather we have demonstrated the feasi-

bility of this approach by using plausible models.

Applications of sociocybernetics can be made in the fields of
psychology, sociology, management, and human relations. As an example,
the phase space analysis procedure could be used as an instrument for
the early detection of a disturbed family constellation. The discrete
model has posSibility as a mangement tool, for example, in the assign-
ment of nursing and physical therapy staff to physically handicapped
patients. From the way in which the models were described, the value
of such an approach in marriage counseling should be apparent. A
predictqr display, a sociological thermometer, might be developed which
could include the interaction of groups and persons (e.g., poor) to
institutional structures (€.g., power). Applications can be made in

the area of human ecology.
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APPENDIX A

MOTIVATIONAL LITERATURE FOR A SYSTEMS ANALYSIS OF HUMAN RELATIONS

Cybernetic principles, including systems analysis, mathematical models
and computer simulation have been used to produce extraordinary achieve-
ments in the physical sciences; the atom has been split, and astronauts
have walked on the moon. “In fact, man's conquest of nature has pro-
gressed so far that he is capable of altering the global environment in
potentially lethal ways. Man has the technological knowledge to pre-
serve himself and his planet indefinitely, but the fundamental problem

in the survival of the race is man himself; our knowledge of, and ability
to control, our social interactions in a rational way are so limited that
man is an endangered species, and the race of man and his little planet

may perish through his own hand before the end of the century.

Mankind's ancient enemies are depicted as the mythical Four Horsemen of
the Apocalypse. Strife continues to threaten humanllife on the planet
Earth. The survival of man on earth is dependent upon stabilization of
the earth's human community. Stabilization of society and its structures
requires control of strife as a prerequisite for man's survival. Strife
is a factor that prevents less than optimal development of man and his
social environment. Strife is analogous to entropy, which is a measure
of amount of energy not available for work during a process. One might
note that war is the organized conflict between highly structured large
social systems. Strife is the disintegration that occurs within a system.

Persons have energy to spend toward realization of their objective. The

32
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actual level reached is often less than maximal, for example, strife
produces a decrement in human relations. It is our thesis that cyber-
netic principles which have been so successfully applied in the physical

sphere of life can be applied to the crisis of human relations.

These ideas are not entirely new, of course; it is the quantitative
implementation of the ideas of many writers in many fields which is
believed to be original. For example, Kelley (1968) has developed pre-
dictor displays for submarine guidance systems. His approach raises the
exciting possibility of developing predictor displays for human relations.
The only point at which man can really exercise control is in the future,
for the past is gone and the present passes before we can act upon it.
The person who predicts can participate in the shaping and control of the
future. A predictor display indicates in real time, that is, before the
event occurs, the probable outcome of the present course of action.
SchwitZggbel (1970) suggests that there can be creative application of

control techniques in social situationms.

A general systems approach has been applied to many of the physical and
environmental problems. Chuechman (1969) presents a general description
of systems analysis, while Buckley (1965) makes direct application to

the behaviorial sciences, Cleland and King (1969) in management sciences
and DeGreen (1970) in psychology and human factors engineering. Gener-
ally a systems analysis approach in social systems focuses upon the macro-

community.

A system analysis uses a model. There is no universal agreement on what

kind of model to use in the study of humans. Lorenz (1969), Ardrey (1966),
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Morris (1969) infer that the best place to study animals is in their
natural habitat. The study of man in his natural habitat is difficult
so he is brought into a testing cubical, or he is modeled. Rhesus mon-
keys, pecking birds or rats are sometimes used as models from which
inferences may be made about man's socio-relations, physio-structure,
pschyo-nature. There are many advantages to such a simulation: subjects
are readily available, they cost less than paying human subjects, the
cycle of an animal's life is shorter than that of a human (shades of
real time) it is easier to define the population from which the sample
is taken, and if the model should "destruct', an experimental failure,
it causes no damage to the human system except for the selfesteem of
the experimenter. Wiener (1970) suggests that cybernetic principles
have application in the behaviorial sciences, but must be used with

caution.

Models that describe conflict have been suggested by Boulding (1963)
ahd Schelling (1968). Nagel (1969) describes models of various legal
processes and Fiedler (1967) postulates leadership models. Human re-
lations in business management is described by Davis (1967). DeGreen
(op. cit.) lists models in human factors engineering. Siegel and
Wolf (1969) have produced computer simulation models of military estab-
lishments and crews. Simulations of society have been described by
Raser (1969), and various models of processes have been described by
Miller (1964) and Uttal (1969). Shubik (1964) applies game theory to
social situations. Experimental results in human factors engineering
can be applied to model design, for instance, the significance of the

knowledge of results. E. Wiener (1969), has implications in the design of a
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feedback éomponent. A mathematical approach is inherent in the design
of most models. Parsons and Shils (1962) describe human interactions
in terms of a monadic unit and a dyadic unit (which suggests a finite
state automaton, though neither automaton nor simulation is mentioned).

Garner (1970) gives illustrations of patterns of ''cellular automata."

Behaviorial scientists have been quick to use the computer for statis-
tical analysis. Others have seen the possibility of computer simulation
of personality. Tomkins and Messick (1963) reported the results of a
conference at Princeton on the theme of the simulation of personality.
Loehlin (1968) describes in greater detail the Princeton models and
factors that should be considered in computer simulation of personality.
A recent review of personality models made by Emshoff and Sisson (1970)
concludes that'%uch.models are rare and hypotheses upon which they can

be built are practically nonexistent."

The exanmiescited above indicate some of the applications of systems
analysis to this area, and the variety of models which have been sug-
gested in the behaviorial sciences. However, a cybernetic approach to

the solution of social problems in the dynamic sense that physical sci-
entists have applied such principles is apparently new. Extensive lit-
erature search has failed to uncover any examples of a cybernetic approach
to human relations. Therefore, we conclude that the development of
plausible mathematical models and computer simulation as tools in a
systems analysis of human relations is a promising area for new research.
This suggests the new subject of Sociocybernetics, the application of

cybernetic principles to a systems analysis of social structures.



APPENDIX B

THE DISCRETE SYSTEM

APPENDIX B-1  DESIGN OF GENESIS MODEL-ONE

The following postulates were used in the development of the GENESIS

MODEL-ONE.

POSTULATE I: The interaction of human beings is a dynamic system.

A. A DYNAMIC SYSTEM, by definition, consists of the following:
Components; C
Connection Matrix; M
Initial Conditions; a
Inputs; I

over time
Output; ©

B. The System may be thought of as a black box, in which the com-
fonents are in an initial condition, receive inputs and give
outputs and in which some portion of the output may be input
into other components within the system. The system consists

of what is in the black box.

;>“‘“*WMﬂW“Iijfi;[zg:::;ij >
. 71;__}”{:;._ ::]
rd 7

Figure 6 A dynamic system
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C. The Behavior of the system is expressed in terms of its output

as a function of its other characteristics and time.
8 =f(C, M, a, I, t)
The next postulate develops the concept of the COMPONENT DESIGN:

POSTULATE II: Each component is a finite state automaton.

The characteristics of a finite state automaton are:

It has a finite set i, of internal states in which it can exist; and
a finite set e, of external environments which it can perceive as

inputs and produce as outputs.

The dynamic behavior of a finite state automaton is determined by two
functions, one of which specifies the next internal state, the other of
which specifies the external environment, each as functims of the pre-

sent internal state and environment. In symbols:

fle , 1)

i
n+l n n

en+1 g(en, in)

The two equations apply pair-wise, not cyclicly.

THE GENESIS MODEL-ONE has the smallest meaningful number of internal and
external states, two each. A person is described by two 2-by-2 matrices,
one for OUTPUT and the other for NEXT STATE. Within each cell of the
matrix, a plus 1 or minus 1 indicates the nature of response in a given

environment and a given internal state. For instance, a sample individual

design is shown in Table 14.



Table 14

FINITE STATE AUTOMATON MODEL OF A PERSON

38

ENVIRONMENT
INPUT INPUT]
STATE. GOOD POOR GOOD POOR
' STATE
HAPPY 1 1 HAPPY 1 -1
SAD 1 -1 SAD -1 -1
OUTPUT NEW STATE

If the person in Table 14 is in a 'plus" state and a "negative" environ-
ment, his output will be ''+'" and his next state "-'"; or if in negative
state and a negative environment, his next output will be '"-" and his

next state will be "-'',

In GENESIS MODEL-ONE we have said that the internal states may be '"happy"
or "sad" and that the environment may be either '"good" or '"poor". In the
feasibility experiment, one could just as well have described internal

states as aggressive, non-aggressive, etc.

Given this design thereare a possible 256 different combinations or model

designs:

2x2)@x2) . 4% . 25

The next element in a dynamic system is the CONNECTION MATRIX.



39

POSTULATE 1II: The interconnections between persons can by described by
a nxn connection matrix connecting the n components Cj' Table 15 is an

‘illustration of such a matrix, M.

Table 15

CONNECTION MATRIX M FOR N COMPONENTS

INPUT
€y mmmmmmmmmmmmmmees Cj mmmmmmmmmmmmoeees C,

OUTPUT
Cy

C, ..

i 1]
C
n

Where Mij the amount of output from
component Ci which is input

into component Cj'

For illustrative purposes, the GENESIS MODEL-ONE has the smallest number
of persons in interrelations, that is two. We also make the following

assumptions:
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The man's total output is perceived by the woman as her total
input and the woman's total output is perceived by the man as
his total input. While self feedback is a part of human en-
counters and can be designed into other models, in order to

facilitate this first model design there is no self feedback.

Table 16

GENESIS MODEL ONE CONNECTION MATRIX

INPUT MAN WOMAN
OUTPUT
MAN 0 1
WOMAN 1 0

This leads to a computation of the number of systems possible for the
two person, two state automaton: Since there can be 256 designs for

the man, a like number is possible for the woman, and hence:

(Man designs) x (woman designs) = (256) x (256) = 65,536 different systems.

The next element is INPUT. We assume in this first simulation that the
two persons move into the proverbial black box, in any one of several
possible initial conditions. There are no inputs during the simulation.

Future models could incorporate stochastic inputs.

The final element in the output is the nature of the INITIAL CONDITIONS.

There are sixteen initial conditions which range from all negative states
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and environments to all positive. A systematic way of enumerating these,

binary counting is in Table 17.

Table 17

SIXTEEN INITIAL CONDITIONS

MAN WOMAN
STATE ENVIRONMENT STATE ENVIRONMENT
-1 -1 -1 -1
-1. -1 -1 +1
-1 -1 +1 -1
-1 -1 +1 +1
+1 +1 +1 +1

GENESIS ONE thus simulates human relations by determining the output of

the system as a function of its parameters:
6 = f(C, M, a, t) with no Inputs.
An example of an actual simulation is the computer simulation output of

one system, Appendix B-7.

APPENDIX B-2

COMPUTATION OF VARIOUS OUTPUTS PRODUCED BY THE GENESIS SYSTEM
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STEADY STATE is defined as that condition in which the system output
at time t+l is exactly the same as at time t. With the same logic
as developed in Appendix B-1 for determination of the initial con-

ditions, there are 16 different possible steady state results.

A CYCLE is a system output which returns to the starting state in n
time steps, and thus starts to repeat itself. There are many dif-
ferent possible combinations, but the length n of the cycle varies

from 2 to 16 states in length.

In a statistical analysis of each system, we can determinethe number
of each kind of steady state; the number of different cycles of 2 to
16 states in length; the number of distinct kinds of 2 to 16 state

cycles; the number of occurrences of each.

The ACCEPTABILITY or UNACCEPTABILITY of a given simulation is deter-
mined by an analysis of the man's state and of the woman's state,

independent of the output of each. If each person is in a positive
state more often than not, that simulation from a given initial con-

dition is called ACCEPTABLE: otherwise it is UNACCEPTABLE.

STRIFE INDEX is the percentage of theminuses (it is analagous to a
measure of the entropy of the system). Let N equal the number of
negative elements in a total steady state (from 0 to 4) or be equal
to the number of total negatives in a complete cycle of 2 to 16
states, and let C equal the number of states in the cycle, from 1 in
a steady state to 16 in the largest possible cycle. Then the Strife

Index SI is defined to be:
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_ 1
ST = 7] (N,/C))

Consider the Strife Index from a given initial condition:

If there is no strife in the system then the strife index = 0.00; at

the other extreme:

Total Strife = 1.00

Acceptability and unacceptability and the strife index are examples of
the sorts of measurements that might be computed. There are many con-
ceivable measurements of the relative success of a given system, based

on different sets of subjective values.

APPENDIX B-3

BINOMIAL NOMANCLATURE

With 65,520 possible systems, the identification of all possible com-
binations can be done by assigning sixteen different first names to the
man's output and sixteen different last names to his Next State matrix,
and similarly for the woman. Thus thirty two names can describe all
possible 256 different men, and since the same number can describe in
various combinations all different 256 women, 64 names can describe all

combinations for 65,536 couples.

An example will be given using the man's output matrix. The four ele-
ments can each be plus or minus. Let the matrix elements be enumerated
in the order row 1, column l; row 1, column 2; row 2,column 1, row 2,

colunm 2. There are 24 = 16 possible combinations. All are listed in
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Table 18. To each can be assigned a name. A suggestion is made in

Table 18.

Table 18

BIONOMIAL NOMANCLATURE FOR MAN'S OUTPUT MATRIX

POSSIBLE OUTPUT NAME
+ + + + Albert
+ o+ + - Bertram
++ - + Charles
+ + - - David
-+ Elbert
- - - - Peter

In like manner a different set of names could be assigned to the next
state matrix. Thus any one of the possible 256 designs of a man can
be named by a combination of his two matrix names. Similarly all designs

for the woman can be named.

APPENDIX B-4  STATISTICS DERIVED FROM SIMULATION

Two hundred and fifty different couples have been simulated. From the
4000 Initial conditions, there were 1138 acceptable simulations, a total

of 28.4 percent. A summary of the results appears in Table 19.
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Table 19

SUMMARY OF 250 SIMULATIONS FROM 4000 INITIAL CONDITIONS

STATISTIC STEADY STATES CYCLES
Total each type 2450 1550
Percent of total 61.3% 37.7%
Total each type acceptable 1016 122
Percent acceptable 41.5% 7.9%

Table 20, which is a computer output, is an example of the extensive
summary that is computed at the end of each system simulation from

sixteen initial conditions. System 1 in the system described in

Experiment I-A in the body of the thesis.

APPENDIX B-5 THE MAGNITUDE OF A THREE STATE SIMULATION

A three state simulation as described in Experiment 1-C has 9 x 9 = 81

different initial conditions.

)(3 x 3) _ 99

There are (3 x 3 = 3,87 x 108 designs for one person.

Total number of systems = 99 x 99 = 1.5 x 1017

If the present population of the earth were all paried off, there would
be about 1.5 x 109 couples, so this design would allow for 108 designs

for each couple, a not inconsiderable variety.
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APPENDIX B-6  FLOW CHART OF COMPUTER SIMULATION

A simplified flow chart of this is shown in Figure 7.

Start
Read Initial State Matrix
-
”| Read models of man and woman
3| Form first line Behave Matrix
Compute next line of Behave |,
from interconnection matrix |\
YES NO
—~——~—~——w*<: Behave = last Behave )&—‘—1
Steady State YES Behave = any former Behave >Jﬂl-~
Go to Statistics

Cycle exists go to statistics

Print results this initial condition

YES <( Other initial conditions >p§9————~
I

Print systems summary

YES 4:_Agy more couples to be simulated4j>~§9——-1
i
End

Figure 7
Simplified Flow Chart of Discrete Model Simulation



APPENDIX B-7

COMPUTER OUTPUT OF TWO STATE MODEL

Table 21

COMPUTER OUTPUT OF A TWO STATE MODEL

A

HAPPY 1
SAD 1 -
NTPoT

S
H

T H
STATE

1

Dicl FYROTHE MAN
EAY [ E0MTNT
STATE 600D POOR

GOoOn  PNAR

1 HAPPY 1 -1

1

SAD -1 -1

NEW STATE

MADEL FOR THE LADY
ENVIRANMENT

TATE  GOOD  POOR GO0ON  PONOK
APPY 1 -1 HAPPY 1 1
SAD -1 -1 SAN 1 -1
ouTPuT NEW STATE
F M AN T HE L ADY
INPUT STATE INPUT
INITIAL CONDITICN NUMBER @ 1
FTRST { IWF TS THE INITIAL CONDITION
1 1 1
1 ¥ 1

1

"THE LAST LINF IS A STEADY STATE

THIS IS STEADY STATE CONDITION NUMBER
ACCEPTARLE STEADY STATE

STRIFE INDEX =0.000

INITY

1

1
-1
-1

AL CONDITION NUMBER 2

FIRST LINE
1
-1
1
1.

IS THE

b ot pmsh

THE LAST LINF IS A STF
THIS 1S STFADY STATF CONDITION NUMBER
UNACCFPTARLE STEADY STATE
STRAIFE INDEX =1.250

2
INITIAL CONDITION
-1
1
1
1
ADY STATE

1

9
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Table 21 Continued

INTTIAL CONDITION MUMBER @ 2 | |
FI28T LINF IS THE INTTIAL CONDITION

1 1 -1 1
1 -1 1 1
-1 1 1 1
-1 1 1 1

THE LAST LINF IS & STEADY STATE
THIS 1S STFANY STATF CONDITION NUMBER 9
UNACCEPTARLF STEADY STATE
STRIFE INNFX =0.750

INTTIAL CONDITION NUMRER ¢ 4
FIRST LINE IS THE INITIAL CONDITION

1 1 -1 -1
1 -1 -1 1
-1 -1 1 1
-1 1 1 -1
-1 -1 1 1

THE LAST 2 LINES FORM A CYCLE
UNACCEPTABLFE CYCLE

INITIAL CONDITION NUMBER : 5
FIRST LINF IS THE INITIAL CONDITION

1 -1 1 1
-1 1 1 1
-1 1 1 1

THE LAST LINE IS A STEADY STATE
THIS IS STEADY STATE CONDITION NUMBER 9
UNACCEPTARLE STEADY STATE
STRIFE INDEX =0.250

INITTAL CONDITION NUMBER : 6
FIRST LINE TS THE INITIAL CONDITION

1 -1 1 -1
-1 ~1 1 1
-1 1 1 -1
-1 -1 1 1

THE LAST 2 LINES FORM A CYCLE
UNACCEPTABLE CYCLF

FIRST CYCLE CONDITION

STRIFE INDEX =0.500
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Table 21 Continued

IMITIA CONOTTION SMabR 8 7
EI2ST LIMF 1S THE INITIAL CONOTTINN

1 -1 -1 1
-1 -1 1 1
-1 ! 1 -1
-1 -1 1

1
THE LAST 2 LINES FORM A CYCLLE
UNACCERPTASLE CVYCLE
FI®ST CYQOLE COMDTTION
STAIFE INDREY =7,50N0

INITIAL CONDITION HUMRFER ¢ 8
FITST L INE TS THE INITIAL CONDITION

1 -1 -1 -1
-1 -1 -1 1
-1 -1 1 -1
-1 -1 1 -1

THFE LAST LINE IS A STEADY STATE
THTS TS STFADY STATE CONDITION NUMRER 14
UNACCEPTABIE STEADY STATE
STRIFE INDEX =0,750

INITIAL CONDTITION MUMBER 3 9§

FIRST LINFE IS THE INITIAL CONDITION
-1 1 1 1
-1 1 1 1

THE LAST LIME 1S A STFADY STATE
THIS IS STEADY STATE CONDITION NUMRER 9
UNACCEPTAPLF STEADY STATE
STRIFE IMDEX =0,.250

INTTIAL CONDITION NUMBER : 10

FIRST LINF IS THE INITIAL CONDITION
-1 1 1 -1
-1 -1 1 1
-1 1 1 -1

THE LAST 2 LINFS FORM A CYCLE
UNACCEPTABLE CYCLE

FIRST CYCLE CONDITION

STRIFEL INDEX =0.500
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Table 21 Continued

INITTAL CONDITICN NUMREFR 1 11
FINST LTME TS THE INITIAL CONDITION

-1 1 -1 1
-1 -1 1 1
-1 1 1 -1
-1 -1 1 1

THE LAST 2 LINFS FORM A CYCLE
UNACCEPTABLE CYCLT

FIRST CYCLFE CONDITION

STRIFD INDEX =0,.500

INTTIAL CONDITION NUMBER 1 12
FIST LIML IS THE INITIAL CONDITICN

-1 1 -1 ~1
-1 -1 -1 1
-1 -1 1 -1
-1 -1 1 -1

THE LAST LINE IS A STEADY STATE
THIS IS STFADY STATE CONDITION NUMBFR 14
UNACCEPTARBLF STEADY STATE
STRIFE TNDEX =0,750

INITTAL CONDITION NUMBFR 3 13
FIRST LINE IS THE INITIAL CONDITION

-1 -1 1 1
-1 1 "1 -1
-1 -1 1 1

THE LAST 2 LINES F0FM A CYCLE
UNACCEPTABLE CYCLF

FIRST CYCLE CGNDITION

STRIFE INDEX =0.500

INTITTIAL CONDITIDN NUMBER : 14
FIRST .LINE IS THE INITIAL CONDITION
-1 -1 1 -1
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Table 21 Continued

-1 -1 1 -1
THE LAST LINE IS A STEADY STATE
THIS TS STEAQY STATE CONDITION NUMBER 14
UNACCEPTABLE STEADY STATE
STRIFE INDEX =0.750

INTTIAL CONDITION NUMBER : 15
FIRST LINE IS THE INITIAL CONDITION

-1 -1 -1 1
-1 -1 1 ; -1
-1 -1 1 -1

THE LAST LINE IS A STEADY STATE
THIS IS STEADY STATE CONDITION NUMBSER 14
UNACCEPTABLE STEADY STATE
STRIFE INDEX =0.750

INITIAL CONDITION NUMBER : 16
FIRST LINE IS THE INITIAL CONDITION
-1 -1 -1 -1
-1 -1 -1 -1
THE LAST LINE IS A STEADY STATE
THIS IS STEADY STATE CONDITION NUMBER 16
UNACCEPTABLF STEADY STATE
STRIFE INDEX =1.000

A summary table produced by this simulation is Table 20, page 46.



APPENDIX C

THE CONTINUOUS SYSTEM

APPENDIX C-1  GENERAL RESEARCH PLAN FOR THE CONTINUOUS SYSTEM

I. Set up the model.

A. Lay down postulates.

B. Construct continuous model.
II. Analyze the model.

A. Local behavior.
1. Determine critical points.
2. Classify critical points (solve algebraic eigenvalue
problem for Jacobian at critical point),
a. Identify dominant linear terms.
b. Find eigenvalues of resulting matrix.

c. Find eigenvectors of resulting matrix.
B. Global Behavior.
1. Find critical orbits.

2. Determine topology (especially connection) of the

phase space.

APPENDIX C-2  POSTULATES AND MATHEMATICAL EQUATIONS FOR THE CONTINUOUS
MODEL

The model is a continuous state dynamic system with each component

7Howard, B. E., "Nonlinear System Simulation', SIMULATION,
October 1966, pp. 205-211, for a tutorial resumé of phase space analysis.
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characterized by an internal state and an output. The following postu-

lates are made about the GENESIS TWO Model:

POSTULATE I:  The INTERNAL STATE

I-A: A person's mood doesn't change without a cause. This is the

principle of '"MOOD INERTIA".

I-B: The Internal State tends to change in the same sense as the
input.

(i.e., Terms a ef and aszem in the model)

14
I-C: The Internal State tends to change in the opposite sense of
the output:
(i.e., Terms 'alzem and -a,,0_. in the model)

34°f

POSTULATE II: The OUTPUT

II-A: The output tends to change in the same sense as the internal
state.

(i.e., Terms aZISm and a435f in the model)

NOTE: The input from the other person which is a component
of the output is assumed to have first gone through the inter-

nal state, and thus is not included in the equation for output.

POSTULATE III: BOUNDEDNESS

III-A: All variables, both for internal state and output, are bounded.
The boundedness is assured by the nonlinear terms such as

a- S;) in the model.
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THE DEVELOPMENT OF THE MATHEMATICAL EQUATIONS

In the discrete model, GENESIS ONE, we assumed that human behavior moved
in discrete units or time. The continuous model makes the alternate
assumption, that humans move continuously from one state condition to

another.

The derivation of the continuous model from the basic postulates is illus-

trated by the local behavior of the man's internal state, Sm:
Sm(t + dt) = Sm(t) + dt(-alzem + al4ef)(-o-)

The increment added to the local state is proportional to time and the

incremental forces specified by postulates I (the terms in parentheses).

Therefore:

Sm(t + dt) - Sm(t)

= (-a,,6 + a,,0.)(* ")
dt 12"m 147 f

Lim Sp(t + dt) - S (8] - S, (The definition of the derivative.)

dt+0 dt dt
Sp = (a8 * 340 (09

By Postulate IIT we have bounded each variable, thus the final equation

for man's internal state is:

2
Sp = (-ap08, + 21,80 - S))

and similarly for changes in the other state variables.
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The continuous model consists of two persons, each of whom is described
by two differential equations, one for internal state and one for output.
‘Thus the system is described by the following set of four equations, each

derived in the same fashion as in the case for Sé’

. 2
Sp = (-app8, + 5,001 -5
6 = ( a..S )1 - 8%y
m 21" m m
S'=(a,06 - a,0.)(1 - Sz)
m 32°m 347 f f
oL = (  a.§ )1 - 89)
£ 43°f £

Where:

S_ is the Man's Internal State

8 is the Man's Output

Sf is the Woman's Internal State
6 is the Woman's Output.

' represents time derivative.

APPENDIX C-3  PHASE SPACE ANALYSIS

The phase space of a dynamic system y' = f(y) is defined to be the space
of the dependent variables. In the continuous model of human relations -
under discussion, it is the space of the variables Sm, em, Sf and ef.
To determine the qualitative behavior of the system under all circum-

stances, we conduct the following phase space analysis:



57

Find the critical points by setting f(y) = 0, and solve for y.

Take one critical point, say Yo translate axes to Y. as origin by

the linear transformation:

y =y, *g etc.
Expand the new f(z) about the origin, retain only linear terms, get
0 .
L = A where A is a square matrix.

Find eigenvalues and eigenvectors of Matrix A. Refer system to new

coordinate axes in which each eigenvector is one of the new axes.

Behavior of solution to equations along each new eigenvector axis

. . t . .
is proportional to ex , where A .is the eigenvalue.

w‘%\‘\\\ /’/ PR '"“—;
e ?Tf'
éib é
A is real < 0 A is real > 0
critical points
solution stable solution unstable

Figure 8 Local behavior with real eigenvalues
If A is a complex number there is oscillation about the critical
point. A stable oscillation heads into the critical point, an
unstable oscillation spirals away from the critical point. This
is determined by the sign of the real part of the complex A. The

imaginary part of the complex A is the frequency of the oscillation.

real part A > 0 real part A < 0

Figure 9 Local behavior with imaginary eigenvalues



58

APPENDIX C-4  DETERMINATION OF CRITICAL POINTS

Critical points are found by setting the four differential equations of
‘this system to zero. (Since they are already of first order, they do

not have to be converted.) The critical points are:

S, = *l; 0= l; Sg =13 8. = I,

(the sixteen vertices of a tesseract, or 4 dimensional cube.)
and

= (0, 0, 0, 0).

The complete phase space analysis of the system is made by performing
a local analysis of the system behavior at each of the vertices and the
origin, or a total of 17 critical points, and determining separatrices
by integrating the differential equations starting along each of the

special (eigenvector) local directions.

APPENDIX C-5  CRITICAL POINT ANALYSIS OF THE VERTICES OF THE TESSERACT

An example of the procedure for calculation of the eigenvectors at the

16 critical points (+1, +1, +1, +1) is as follows:
AT CRITICAL POINT (fl, -1, -1, -1):
Let: ;i = (—1 + Ci); ei = ("1 + T\i)

Then: ¢
en: g

[‘alz('l‘* nm) + 314('1 + nf]Cm(Z - Cm)

@O

= [a21(’ + Cm)]ﬂm(z = em)
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[agp (-1 + 1) - a5, -1 + nANEe2 - £

DO
L]

f [343(-1 + Cf)]nf(Z - ef)

The equations are expanded as follows:

? |
m (215 - 3py) 0 0 0 \Ecm \
|
em 0 "3, 0 0 em
=2 + higher
o order
;f 0 0 (a34 - a32) 0 cf terms
\ 8, } \ 0 0 0 -343‘\6f /

The above coefficient matrix is the Jacobian of the expressions for the
derivatives at the critical point in question. The four terms will deter-
mine the nature of each of the four eigenvectors at this vertex (and it
turns out that each of the Sixteen vertices has a diagonal Jacobian).

From the diagonal nature of the Jacobian we see that the eigenvectors

are the four edgeé of the tesseract emanating from the vertex. If the
eigenvalue (diagonal term) corresponding to a given eigenvector is posi-
tive the corresponding solution is unstable; if it is negative it is
stable and the solution trajectcry leads into the vertex at the critical

point:

+ is unstable, solution goes away from critical point

- is stable, solution goes into critical point.
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An analysis similar to the above must be made for each of the 15

remaining vertices, i.e., just put appropriate t values into the

Jacobian:

Jacobian

] 1 i) ]
a(sm,em,sf,ef

3(Sm,6m,Sf,0f)

l 2 2. |
-ZSm(—a126m+a146f), -alz(l-Sm), 0 s 314(1-Sm)
a, (1-52) -2a..S. 6 0 0

21 m ’ 21’ mm °
0 a,,(1-5%), -25.(a,,8 -a,,0.), -a,,(1-5%)
s AzoU1-5p), =25pla5,0, ma5,00), —ag,1-5g

2
ay5(1-6.) , -22,.5.08,

The results are summarized in Table 22,
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Table 22
SUMMARY OF CRITICAL POINT ANALYSIS AT VERTICES
Number Critical Point Sm em Sf ef
1 (-1,-1,-1,-1) 22 " 214 | 21 | %34 " 232 "33
2 (-1,-1,-1,+1) | 2y, +a), | -3y | -(ag; + agy) 33
3 (-1,-1,+1,-1) a;, = 2, 351 az, = gy a2
4 (-1,-1,+1,+1) a1, * 31, 3,1 Az, + Ag a4
5 (-1,+1,-1,-1) '(812 + a14) ay, az, + 8z, ~3, 4
6 (-1,+41,-1,+1) 314~ 212 431 | 333 - 33y 343
7 (-1,41,41,-1) | -(aj; + a;,) | ay ~(agy *+ agy) a3
8 (+1,+1,41,+1) 314 - 212 31 | 234 " %32 "3
9 (+1,-1,-1,-1) 314 " 312 A321 a4 33 843
10 (+1,-1,-1,41) | (a5 + 214 | 3y | -(agy + ag,) 33
1 (+1,-1,+1,-1) 3147 12 | %21 | %32 7 334 33
12 (+1,-1,%1,+1) --(a12 + a14) a5 (a32 + a34) a2
13 (+1,+1,-1,-1) a0+ 2, -3, Az, * 3g, -3,
14 (+1,41,-1,+1) 312 " 314 | "1 | %32 " 23, 343
15 (+1,+1,+1,-1) a5 * 3, ~a,51 -(a32 + a34) 3y,
16 (+1,+;,+1,+1) a0 = A, a5 3z4 = 8z -3,
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As we show later, the relative values of the aij elements will determine
for a given system the qualitative nature of the particular eigenvector,

‘'stable or unstable.

APPENDIX C-6  CRITICAL ANALYSIS AT THE ORIGIN: (0,0,0,0)

The coefficent matrix A of linear terms governing the behavior of the

system in the neighborhoo& of the origin is:

0 212 0 314
az1 0 0 0
A=
0 327 0 -2z
z 0 0 a43 0

The characteristic equation of A, det(A - AI) = 0, is:
A4 + (a,,a,, + a,,a )Az + a,.a,.(a,;,a,, - a,,a,,) =0
12721 34743 21743712734 14732 '

The upper left and lower right 2 x 2 minors of A characterize the

individual component behavior. That is,
if a14 = a,, = 0, then there is no interaction, and each

person is isolated and self-contained.

Let a

W
=

12321 = W where Wm equals the natural frequency of oscillation

of the male.

_wl . .
az48,z = Wf where Wf equals the natural frequency of oscillation

of the woman.
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4 .
3143378133 = Ws where Ws is the natural frequency of the coupled

system with no internal feedback (a12 = ag, = 0)
-Then the solutions of the characteristic equation for the eigenvalues,

A, can be written as:

2 2 2 V) 2
2° = -(wm+wf):/(um-W)

2 . 4
f

4w
s
Now since all aij are > 0, the 3 W's are also > 0 and hence the dis-

criminant

2,2 4

2
W - Wo)” + 4w 2 0

and is equal to 0 if and only if Wm_= Wf and W, o= 0. The latter case
(Ws = 0) is an uncoupled system, each person being completely isolated
from the other and this type system will not be considered further in

this model.

With the discriminant > 0, there are two qualitatively distinct situa-

tions for the eigenvalues”

discriminant > or < (wﬁ + wg)z.
This reduces to the two situations:

314832 > O < 3y534,-

Since aj, and a5, are the interacting terms, while a 2 and az, are the

1
self-feedback terms, the two cases correspond to a strongly coupled and

weakly coupled system, respectively.
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‘When a, ,a we have a stronger coupling with lesser self-

14732 7 #12%34
feedback.
‘When 214335 < 3y,37, We have a weaker interaction, or coupling, with

greater self-feedback.

The first case produces a conjugate pair of pure imaginary eigenvalues
(an undamped oscillation of that frequency in the neighborhood of the
origin), a positive real eigenvalue and corresponding unstable direction
(eigenvector) and a negative real eigenvalue and corresponding stable

direction at the origin.

The second case produces two conjugate pairs of pure imaginary eigen-

values, each corresponding to an undamped oscillation in the neighbor-
hood of the origin. The eigenvectors determine the real planes of the
oscillations, which in general are different. Each of the above situa-

tions is illustrated by a case example.

APPENDIX C-7  CLASSIFICATION OF QUALITATIVELY DISTINCT CASES

From the table in Appendix C-4, we see that the local behavior at the

vertices is governed by the relative magnitudes of a,., vs. aiys and

12

azy VS. 2. From the analysis in Appendix C-6, we see that the local

32
behavior at the origin is governed by the relative magnitude of
814825 VS. 2;,34,. Thus there are six qualitatively different cases

that can be subjected to simulation. These are:

CASE 1: a;, > a), a3 > 83y 1483y > 2)585,

A strongly-coupled system, each most effected by man's output.
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CASE 2: a,, >a dzy > Ay a1 485, < 81582,

12 14

A weakly coupled system, each most affected by man's output.

CASE 3: aj, > a), g9 < 33 314335 < 81533

A weakly coupled system, each most affected by own output.

CASE 4: a a,, > a

12 < 34 32 7 234 314333 7 212%34

A strongly coupled system, each most affected by other's output.

CASE 5:

212 < 34 837 < 834 314%32 7 212%34

A strongly coupled system, each most affected by woman's output.

CASE 6: a4, <25, 35 < 33y 14855 < By787y

A weakly coupled system, each most affected by woman's output.

A second descriptive classification is:

1. Strongly coupled 314237 > 21583,

a. Male introvert, femakeextroyert; a), > 2145 Az > 8z,

b. Male extrovert, femaleintrovert; a1, < a1y, 35, < Ay,

c. Male extrovert, femaleextrovert; 315, < 8y, 845 > g,

2. Weakly coupled 3198z4 > 25,43z

a. Male extrovert, female introvert; a > a

12 > 214 232 7 334

b. Male introvert, female extrovert; a4 > 15 33 > 85,

c. Male introvert, female introvert; 5

312 7 2140 34 ” 23
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Since we have three elements taken two at a time, we could assume that
there should be eight different cases. There are, but the remaining
two are impossible from both a mathematical concept and from a human

relations viewpoint:

a12 > a5 a32 < a34, a14a32 > a21a34 is impossible;

to have a strongly coupled system when each person is more effected by

his own output, cannot happen.

a1p < 145 B3y > 8gy, 83,32, < By84, s impossible;

to have a weakly coupled system when each person is more strongly
effected by the other person's output, cannot happen; for this would
imply a strongly coupled system. Mathematically, we can easily show

that for a,, > 0,
1)

> a and a > a

a 14 34

12 32 ™ 383 > 3,3, and

> a, and a.,>a

a 12 32

14 34 14232 > 2122345

(a1 > 310 A (354 > a5)) + (a;; = 3, + DYA (ag; = ag) + ¢)> aj aq, =

314832 * Dagy + Cayy ¥ De > a5 > 3,5

APPENDIX C-8  CONSTRUCTION OF TYPICAL CASES

We now have the problem of simulating typical cases of each of the six
types. It will be convenient to choose values qf the a, . such that the
eigenvalues will be simple numbers to facilitate local hand checks.
This is a Diophantine problem that can be solved with the help of

Pythagorean numbers.
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We have (page ) expressed the characteristic equation in terms of the

a.. elements and then in terms of W_, W., W , thus:
ij m* £’ s

R U SR AU LR L

where

2
Wp = 3158y
2
We = az,8,,
W4-aaaa
£ 7 214%32%21%3

If the sum of the radical terms can be made equal to perfect square,
the computations for A are greatly simplified. This can be done by

the use of a set of Pythagorean Numbers.

Table 23

PYTHAGOREAN NUMBERS

m>n X Y R

2 2 2 2
m n m -n 2mn m +n
2 1 3 4 5
3 2 5 12 13
4 1 15 8 17
4 ki 7 ‘ 24 25
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The values for X and Y in Table 23 represent
e the legs of a right triangle and R is the

//E// Y hypotenuse as illustrated in the sketch.

Let 2 W = equal an even number (usually Y)

) may be either odd or even X or Y,

N N

2
(Wm - W

After values are thus determined, one may then determine combinations
of integer aij's that will satisfy both the W terms and the relative

relationships for the case under analysis.

APPENDIX C-9  MATHEMATICAL CALCULATIONS FOR ANALYSIS OF AN ACTUAL CASE

CASE 3, APPENDIX C-7: ay9 > 3140 azy < Az4s 314235 < 25,82,

values for all a..'s:
1)

a1, =2; 3, =1 ay =l a5, =2 ag =3 and ap=1
Then

\'l2=aa =2x1=2
m - %12%21

We=a,a,_=3x1=3
£ 7 B34M3 T =

w4 = a,.a,,a = 2
s ~ 314%32%21%43

2 .2 73 )
IR A /ftwm - Wh% e @awd)
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The linear coefficient Matrix A is: / 0 -2 0 1 \

\
1 0 0 o‘
0 2 0 -3
0 0 1 0

The eigenvector V is a nontrival solution of (A - AI)V = 0. For the

eigenvalue A = -i, we have the equations

i -2 0 1][v1‘ ;’o\
|
1 +i 0 0 v, ; 0
- 7
0 2 1 -3 'V3 §0
H i
v 0 o 1 1} vyl 0
Solution: vl = -i; v, = +1; Vg = -l v, = +1.
-i {0 1
; 1 1 0
Eigenvector = = + 1
-1 0 1
IRY R EY Y

The real and imaginary parts of the eigenvectors, taken as two real

vectors, span the real plane of this oscillation in phase space. For
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starting point, choose a value in this plane. For instance,

Let Sm = 0.1
o = 0.0
Sf = 0.1
Gf = 0.0

Using the other conjugate pair of eigenvalues: A = % 2i, use -2i as

the eigenvalue and obtain the corresponding

fx\ '0\ ?1\
4 i
«1/20 L2 | o
eigenvector = | - = | +i§
-2i U -2
!
| 1 L1 | o

Starting point

0.1

wn
n

0.0

<]
i

Se = -0.2

ef = 0.0

The starting points are selected at some small distance from the origin,

in the appropriate direction.
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APPENDIX C-10  COMPUTER SIMULATION STEP SIZE
PERIOD CALCULATIONS

Ya12%21°

For man — where Wm

L]
|5

2 .
for woman W where Wf = /a34a43,

for coupled system = %ﬂ~ where Ws = 4/a

. 14221232843

an example calculation is for the system described in C-9;

VY21 = V2 = 1.414,

Frequency for man : W_

Frequency for woman: W, = /3°T = /3 = 1.732

Frequency for coupled system: WS = 4“1- 112 = 4/5 = 1.19.

COMPUTER SIMULATION STEP SIZE

Let W = frequency in each of the system, within the system, divide the
largest frequency into 2w, then divide this result by 12 and for ade-
quate discrete definition of continuous oséillation, with acceptable
discretezation error, round off to convenient stepsize for computer simu-

lation.

For man W
)]

]

1.1414,

for woman W 1.732, and for

f

1.19.

coupled system ws
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“We also have two pairs of eigenvalues * 2i; + 1i. Largest value of

seven values above is 2.

2n 2w

T
= = <% = .252,
W (2) Tz (1) T 12

STEPSIZE = 0.25

Since largest cycle is 5.28. A run of 6.0 would adequately include all

cycyles.

DELT

"

0.25

TIM MAX = 6.00

n

APPENDIX C-11  LOCAL BEHAVIOR AT VERTICES

Using the Jacobian matrix developed in Appendix C-5 and for values for

aij's that define Case 3, Appendix C-7;

a, = 2; a =2; a,, =3; a

4= 1; ay = 1; azs 34 43 = 1,

we develop Table 24,
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Table 24

Eigenvalues along each edge at each vertex

NUMBER CRITICAL POINT Sm Bm Sf ef
1 -1,-1,-1,-1 +1 -1 +1 -1
2 -1,-1,-1,+1 +3 -1 +1 1
3 -1,-1,+1,-1 41 -1 -1 1
4 -1,-1,+41,+1 +3 -1 +5 -1
5 -1,+1,-1,-1 -3 1 +5 -1
6 -1,+1,-1,+1 -1 1 -1 1
7 -1,+],+1,-1 +1 1 -5 1
8 -1,+1,+1,+1 -1 1 +1 -1
9 +1,-1,-1,<1 -1 1 +1 -1

10 +1,-1,-1,+41 | -3 1 -5 1
11 +1,-1,+1,-1 -1 1 ~1 | 1
12 +1,-1,+1,+1 -3 1 +5 -1
13 +1,+1,-1,-1 *3 -1 +5 -1
14 +1,+1,-1,+1 +1 -1 -1 1
15 +1,+1,+1,-1 ” +3 -1 -5 1
16 +1,+41,+1,+1 +1 -1 +1 -1

I1f the eigenvalue is + the eigenvector edge is unstable at Critical Point.

I1f eigenvalue is - the eigenvector edge is stable at Critical Point,

APPENDIX C-12  COEFFICIENTS FOR EACH QUALITATIVELY DISTINCT CASE

CASE 1

312 7 214 832 > 3y 214232 > 317%34



. CASE 2

CASE 3

12

14

14

14

14

14

COEPFICIENTS FOR EACH QUALITATIVELY DISTINCT CASE

32

32

34

az4

34

34

34

314232 < 212834

314232 < 21283

214%32 7 212%34

314%32 7 212%3

314332 < 212%34
| Table 25

CASE | aj5| 314 | 221| 232 | 234 | %3
e

1 2 1 1 6 1 1
2 9 2 4 4 3 2
3 2 1 1 2 3 1
4 1 2 1 3 2 1
5 1 3 2 2 3 1
6 2 3 2 1 3 1

74



_APPENDIX C-13  CLASSIFICATION OF EDGES OF TESSERACT

75

A scheme to determine global behavior along each edge of the tesseract:

Place all sixteen vertices, one each on a three by five

card: ex. for vertex #11:
#11 (+1, -1, +1, -1)

Call the binary terms from left to right a b ¢ d: in the
above case +1 -1 +1 -1

a b ¢ d

Connect the various vertices as follows: start with
vertex #1; note the value at point "d"; go through the
deck of sixteen cards until the card differing from #1
only in the value of "'d" is found. The two cards will
identify the behavior of the solution vector along the
tesseract edge connecting these vertices. Make a little
mark on the card that contains the vertex so this parti-

cular value on that card can not be used again. Now go

to card one, value ''¢", again go through the deck, noting

the first card that has an opposite sign in its "c"
column that is opposite to card one "¢ column, again
this will be the vertex to which the em vector will go,
check this value off the 3 by 5 cards. Repeat for
column '"b", then column "a". This will give the four

vertices into which vectors Sm, em, Sf; ef will go.
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4. Repeat using vertex 2, in each case compare the a, b, ¢ or d
on card 2 with other cards starting with one, when an opposite
sign is found that has not already been used, that is the
vertex toward which the edge goes. As soon as a case is found,

check that particular element on the ''found card".

5. To determine the direction of the relationship from one vertex

to the next, the following scheme is used:

a. Take the five cards which make up any one set at a
given vertex, i.e. the vertex and the four vertices

to which each edge goes.

b. Compare vertex column "a'" with next vertex fo? Sm
column "a", if they are one "plus" and one "minus"
then vector always goes toward the - vertex. If
they are the same, either plus or minus, then one
must look at the coefficient matrix that was deve-

loped from the Jacobian Matrix, Appendix C-5.

By considering the coefficient relationshiﬁs it will be possible to
determine if there is one relationship that will always be negative,
if so the edge will always be oriented in that direction, if not, the
edge may be oriented in either direction, the direction dependent upon

the values of the aij's.

The results of these computations are shown in Table 26.



CLASSIFICATION OF EDGES OF TESSERACT

Table 26

VERTEX O S¢ *n Sm
1 ---- 1 «<2 1> 3 1 <=5 1<€* 9
L3 J— 2> 1 2 &4 2 <6 2y 10
3 —ed- 3>>4 el 3&<7 3 &1l
*4 et 4 <3 45> 2 4¢<8 4 >.312
*5 4-- Se<6 555 7 5> 1 5¢<13
6 -+-+ 6%>5 6 <u8 6 >> 2 6 > 14
*7  —44- 7> 8 7€<5 7>5 3 7 <5
8 -—+++ 8 &< 7 8 «>6 8 >4 8 «>16
9 4=-- 9 «<10 9«11 93> 13 9esl
0 +--+ | 10%> 9 10 <12 10 »5 14 10 <2
11 +-4- | 11>>12 11 €9 11 > 15 11 «>3
*12  +-4+ 12 <—<11 12 > 10 125>> 16 12 << 4
*13 44— 13 <14 13}*-} 15 13<<9 139> 5
14 +4-+ 14%5> 13 l4 <16 14 €< 10 l4 e 6
15 44— | 15%> 16 15 €< 13 15 <<11 15>> 7
16 ++4+ | 16 €< 15 16 «> 14 16 €< 12 16 <8

77
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>—> Indicates that edge must go in this direction

This is what happens when value of parameter of larger

index is larger; i.e. a34 > a:().2 or a;, > 2;,

Edge may go in either direction depending on values of

' s ’
aij s. In this assumed az, < azy as a standard.

*Indicates vertices that never change in vector direction, will always

have two going away and two coming in: A saddle point.
The vertices may be classified as in Table 27.

Table 27

VERTICES CLASSIFIED ACCORDING TO EDGE VARIABILITY

SOMETIMES SOMETIMES ALWAYS

EDGE STABLE UNSTABLE SADDLE

ORIENTATION VERTEX VERTEX VERTEX
Variable 1, 16 6, 11 3,8,9,14

No 2,4,5,7
Variability None None 10,12,13,15

We now have enough information to determine the direction of the eigen-
vectors at any one of the 16 vertices of the tesseract. We have shown
in Figure 10 a scheme that indicates which vertices are connected. In
addition, we have indicated those eigenvectors thch must always go in

a certain direction regardless of the values of the aij's. The unmarked
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~vectors go in a conditional direction which is determined by the parti-
cular values of the aij's. This scheme will provide for the complete
“analysis at each of the 16 vertices for all qualitatively different

system.

APPENDIX C-14  TOPOLOGY OF PHASE SPACE

Topologically there are four distinct phase spaces in respect to the
vertices shown in Table 28. These are:
I. Man is dominant, an extrovert, system weakly or strongly
coupled,
II. Neither person dominant, system weakly coupled,
III. Each person most effected by other person, strongly coupled
system,
IV. Woman is dominant, an extrovert, system strongly or weakly

coupled.

Table 28

TOPOLOGICALLY DISTINCT PHASE SPACES

gﬁgﬁ COEFFICIENT COMPARISONS
PHASE APPENDIX 4 ~a e . g a

SPACE c-7 12 14 32 34 14232 V 212%34
I 1 > > >
2 > > <
I1 3 > < <
II1 4 < > >
v 5 < < >
6 < < <
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In all cases but one (of the topologically distinct phase spaces),
every vertex of the tesseract is a saddle point, with the number of
unstable edges varving from 1 to 3. This means that there will be
continual movement within the tesseract, as the dynamic relationship

between the partners will never come to stable equilibrium.

The one exception is that of the two "extroverts'", or each person
most strongly influenced by the other. In this case, vertices
6(-1,+1,-1,+1) and 11(+1,-1,+1,-1) are unstable. These are the situ-
ations when both partners are in phase; at vertex 6 both outputs are
at positive saturation; at vertex 11, both internal states are at
positive saturation and both outputs are at negative saturation; in
neither case can the situation persist. Furthermore, vertices
1(-1,-1,-1,-1) and 16(+1,+i,+1,+1) are points of stable equilibrium;
if either point is approached, the system will be driven to that

. vertex and the situation will persist. Clearly if vertex 1, “divorce
or murder" must‘result; if vertex 16, we have the "marriage made in
heaven', and the analysis had better start considering external input

to the system to bring it back to earth.
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A\ 4

Edge this direction all phase spaces

——> This S_ edge varies according to phase space

=—> This S¢ edge varies according to phase space
Vertex # Coordinate Vertex # Coordinate
1 -1 -1 -1 -1 9 +1 -1 -1 -1
2 -1 -1 -1 +1 10 +1 -1 -1 +1
3 -1 -1 +1°-1 11 +1 -1 +1 -1
4 -1 -1 +1 +1 12 . +1 -1 +1 +1
5 -1 +1 -1 -1 13 +1 +1 -1 -1
6 -1 +1 -1 1 14 +1 +1 -1 41
7 -1 +1 +1 -1 15 +1 +1 +1 -1
8 -1 41 +1 +1 16 +1 +1 +1 +1

Figure 10 Two dimensional representation of tesseract edge direction Phase
Space I System is either weakly or strongly coupled, man dominant,
Cases 1 and 2, Appendix C-7,



For vertex numberihg and edge symbols see Figure 10,

Figure 11 Two dimensional representation of tesseract edge direction
Phase Space II. This is a weakly coupled system, neither
person dominant, both introverts., Each vertex is a saddle
point with two stable and two unstable edges. Case 3,
Appendix C-7.
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Unstable

Stable

Stable

<’ <( Unstable

For vertex numbering and edge symbols see Figure 10.

Figure 12 Two dimensional representation of tesseract edge direction
Phase Space III

This is a strongly coupled system with each person most affected by the
output of the other person, Case 4, Appendix C-7.

It is only in this case where there are two completely unstable vertices,
6 and 11, and two completely stable vertices, 1 and 16,
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For vertex numbering and edge symbols see Figure 10,

Figure 13 Two dimensional representation of tesseract edge direction
Phase Space IV

The woman is dominant in respect to output effect. The system can be
either weakly or strongly coupled, Cases 5 and 6, Appendix C-7, Ver-
tices 1,3,14,16 each have three stable edges and Vertices 6,8,9,11 each
have three unstable edges. .
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APPENDIX C-15  SUMMARY OF PHASE SPACE ANALYSIS WITH GRAPHS OF TOPOLOGI-
CALLY DISTINCT CASES

State of Male, Sn > t

Output of Male, O

State of Femlae, Sf

Output of Female, L ‘ t

Figure 14 Sm’ em, Sf, ef as functions of time.

The above figure represents 500 time units, plotted by 10's. This
graph illustrates the sort of real life behavior that can occur start-
ing from an arbitrary set of initial conditions. Such realistic beha-
vior is hard to analyze from a time plot alone. But with the phase
space topology of the system at hand (in this case a weakly coupled
system of two iﬁtroverts); and the knowledge that every behavior pat-
tern is a combination of fundamental modes which can be depicted, the

typical variable behavior pattern can be understood.
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]
Vertex 8 /b Vertex 16
(~+++) (++++4)
S, vé..._a.
Y
J
> Sy
0,0,0,0
i A
N : e e
> .
Vertex 4 Vertex 12
(--++) (+-+4)

Figure 15 A strongly coupled system, male dominate, in the neighbor-
hood of the origin, Case 1. Corresponding to eigenvalues *2i, there
éhould be a pure oscillatory mode in the neighborhood of the origin in
the plane spanned by the real vectors (-1,+1,-3,+3) and (1,1,3,3). How-
ever, the unstable mode corresponding to the real eigenvalues'+1 appar-
ently dominates the oscillatory mode, and this sample behavior trajectory
differs little from the critical unstable trajectory shown in Figure 4

for this system.
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0 ]
A /Af
/l
il "\\\
# [} S
> — =
{ > S, <= £
\¥;‘~1 1
0
Figure 16-a Male Cycle Figure 16-b Female Cycle
S¢ O
il
.5

S~

v
(%)
=]
]
!
i
; -
@
8

Figure 16-c States Compared Figure 16-d Outputs Compared

Figure 16 A male dominated, weakly coupled, system in the neighbor-
hood of ‘the origin. Figures a, b, ¢, d: out-of-phase oscillation of
frequency v 38, and plane of oscillation spanned by (2,0,-1,0) and

{0,-4,0,1). This is Case 2.
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®n
A
5
)’_} — S
AN . |
0
Figure 16-e Male Cycle Figure 16-f Female Cycle
S¢ O
A »
— -y
5 > Sm > Gm
.6 .75
Figure 16-g States Compared Figure 16-h Outputs Compared

Figure 16 A male dominated, weakly coupled, system in the neighbor-
hood of the origin, Case 2. Figures e, f, g and h illustrate an in-phase
6scillation of frequency 2 and plane of oscillation: (0,1,0,4),

(1,0,8,0).
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0
m
Vv 12 A V 16
ertex ertex
(-++4) [ Ve h > (1,1,1,1)
\\g
e Sm
1 (0,0,0,0) 3
i
i
t
|
B :
Vertex 4 Vertex 8
(--++) (+-+4)
Figure 17-a Trajectory of Male
0
4 /\f ' 16
Vertex 1 ertex
(++-4) e > (++++)
v
> S¢
(0,0,0,0)
\ 4
7
Vertex 13 Vertex 15
(++--) (+++-)

Figure 17-b Trajectory of Female

Figure 17 A strongly coupled system of extroverts in the neighborhood
of the origin. In Figure 17 a, b the trajectory goes to the stable ver-
tex 16 along the unstable eigenvector (1,1,1,1) where A = +1. This is

Case 4.
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)
m
~
Vertex 6 N - _ Vertex 14
(-+-+) Vel > %(++-+)
\’ |
— SRS — Sm
(0,0,0,0)
N
Vertex 2 - 7 Vertex 10
(---+) 7 (+--4)
Figure 17-c Male Trajectory
8
m
N
Vertex 6 ~ ~ Vertex 8
Va 7
A4
> S,
(0,0,0,0)
| A
Vertex 5 S Vertex 7

Figure 17-d Female Trajectory

The other real eigenvalue in this system, Case 4, of strongly coupled
interaction is -1. The stable eigenvector (-1,1,-1,1) approaches the

origin from the direction of vertex 6, as shown in Figures c and d.
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m
Vertex 6 4\ Vertex 14
B T 4 T> T .‘_,_.m,4._..-4‘--._“._...-., ”HM—}_ (++—+)
v \ N
\_‘;A
AN
™
\
\ > S
¥ (0,0,0,0) m
A
Vertex 2 |._ Vertex 10
-——— - o=t
Figure 18-a Male Trajectory
Af
Vertex 6 ' Vertex 8
ere S . R PN
\
!
R S¢
N
(0,0,0,0)
A
Vertex 5 > Vertex 7
- ' (~++-)

Figure 18-b Female Trajectory
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Figure 18 Behavior of a strongly coupled system of extroverts, Case 4.

Coming from the unstable vertex 6, the critical orbit spirals .into the

origin, with oscillatory behavior of frequency 2 cycles per unit time,

parallel to the plan (2,0,-3,0), (0,-2,0,3).
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O
N
Vertex 6 ~,  Vertex 8
-4t » o )
Y ::;)
=4 Sf
(0)090’0)
F
Vertex 5 — Vertex 7
- - - et

Figure 19-a Woman In Unstable Limit Cycle

O
A
Vertex 14 ___Vertex 16
+4-4 Tl sees
\( g“
-
> Sf
(0,0,0,0) :
A
Vertex 11 L5 _ Nertex 15
- bt

Figure 19-b Woman In Stable Limit Cycle

Figure 19 A strongly coupled system, woman dominate, in the neighborhood
of the origin, Case 5. In Figure 19-a the trajectory rapidly approaches

the planevsm = -1, em = 1, along the stable eigenvector (-2,4,-3,3),

A = -1. Figure 19-b is the plane Sp=1s 6y =1 (happy man with positive
output) ; the woman's trajectory is along the unstable eigenvector (2,4,3,3),

_A=+1, to a stable limit cycle in the aforementioned plane.
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f
"N
Vertex 6 _4?1Vertex 8
-4~ -+++
L 4 .
N, 5 S
0,0,0,0) > 1
Y, N
Vertex 5 - i Vertex 7
—_— - il bt -

Figure 19-c A strongly coupled system, woman dominant, in the neighbor-
hood of the origin. Corresponding to eigenvalues +/ 6 i, there should be
a pure oscillaﬁory mode in the neighborhood of the origin in the plane
spanned by the real vectors (2,4,3,3) and (-2,4,-3,3). However, the un-
stable mode corresponding to the real eigenvalue +1 apparently dominates
the oscillatory mode, and this sample behavior trajectory differs little
from the critical unstable trajectory shown in Figure 19-a for this sys-

tem, Case S.

Note that in the cases of a strongly coupled system: if there is one
dominant person, (cases 1 and 5) he tends to go into a limit cycle while
the other person approaches a limiting condition; if both persons are

extroverts (case 4) each approaches a limiting condition.
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Figure 20-a Male Cycle Figure 20-b Female Cycle
Sf eﬁ
!
0. 1.5
> S Zal > 0
. m 4f{o.o m
3.0 R
Figure 20-c States Compared Figure 20-d Outputs Compared

Figure 20 A weakly coupled system, female dominatg, in the neighborhood
of the origin. Figures 20 a, b, c and d: in-phase oscillation of fre-
Quency 1 cycle per unit time in the plane spanned by (1,0,1,0), (0,2,0,1).
This is Case 6. Note that in a weakly coupled system, dominated by one
person, there is oscillation in the neighborhood of the origin; it is in
the strongly coupled systems that one or both persons approach (or come

from) a vertex.
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~ 0 f
i
.
li
Figure 20-e Male Cycle Figure 20-f Female Cycle
S¢ O
A N
0o
S 73 ] ]
- e \\ el s e S ‘,,_____,__; m
b OON&\SQ 25
2,25 | .

Figure 20-g States Compared Figure 20-h Outputs Compared

Figure 20 continued: A weakly coupled system, female dominate, in the
neighborhood of the origin, Case 6. Figures 20 e, f, g and h: out-of-
phase oscillation of frequency v 6 cycles per unit time in the plane

spanned by (-3,0,2,0), (0,-3,0,1).
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APPENDIX C-16  FLOW CHART CONTINUOUS SYSTEM

A simplified flow chart using FORTRAN for the continuous model is shown
in Figure 21. The continuous system is, also, modeled in CSMP. The

FORTRAN MODEL and CSMP, both simulations, used Fourth Order Runge-Kutta
integration. The FORTRAN decks for both forward and backward runs were

checked against trigonometric tables.

Start

Read Differential Equations
for Man and Woman

Read System Coefficients !(

Read Time, Stepsize, Timemax

. Runge-Kutta Intgg;ation

NO

- Time Max YES

N\

Print Simulation

AELJ(»Other Couples to Simulate YES

End

Figure 21

Simplified Flow Chart Continuous System
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COMPUTER OUTPUT OF CONTINUOUS SYSTEM

APPENDIX C-17
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VITA

Henry Warren Kunce was born April 18, 1925 in St. Louis, Missouri.
He grew up in suburban Kirkwood, graduating from high school in 1942.
He enrolled as a civil engineering student at Washington University in
St. Louis, but in his junior year gave up a deferment to enter the army
during World War II. The time in service was also a time of question
asking: why do men build bridges only to destroy them? There must be
a way to build bridges between men of diverse races and cultures; that
problem came to seem to him more basic than the building of a suspen-
sion bridge. Mr. Kunce returned to Washington University after V-J Day
and completed his work for an A.B. Degree with a major in mathematics
in 1946. Three years of graduate study followed at McCormick Theologi-

cal Seminary in Chicago from which he received the B.D. Degree in-1949.

The Presbyterian Congregation he first served ﬁas in Galion, Ohio.
He returned to St. Louis and served a suburban church from 1953-1961,
after which he developed a new congregation in Kansas City, Missouri.
He came to Miami in 1965 to organize the first planned suburban inter-
racial Presbyterian Church in the nation. During the twenty years as
a parish minister, he continued graduate studies and participated in
professional institutes: Presbyterian Institute of Industrial Relations,
New York City (1949); Washington University, St. Louis (1957-59); Johnson
C. Smith University, Charlotte, North Carolina (1965); University of
Omaha (1963); Institute of Advance Pastoral Studies, Detroit (1961);

Krisheim Institute, Philadelphia (1967).



The motivational factor in his ministry was that the truth would
make men free. The application of this in human relations is evident..
‘The parish church might have been the laboratory for experimental devel-
opment in human relations, and the nucleus for such development in com-
munity life, but his long dormant early training in the physical sciences
led Mr. Kunce to seek new tools to apply to those problems which seem to

him so basic.

A whole new tool had been successfully applied in the physical
sciences: cybernetics. Was it possible that cybernetics could be used
in the ultimate enrichment of human relations? Man's response to other
men and the raising tension in the world made Mr. Kunce wonder if we
know enough about human interactions to survive. A saddle point had been
reached; he enrolled in the University of Miami's School of Engineering

in 1969 for graduate studies in Systems Analysis.

As a youﬁg man, he departed from his mathematical and engineering
tfaining to enter the ministry as a means of human-bridge building. Now
he seeks to take more than twenty years' experience in the human relations
field, and use the sophisticated tools of modern cybernetics to build a
bridge with the dynamic analytical tools of the physical scientist in

human relations and the concerns of the behaviorial scientist.

Married to Miss Avon Estes in 1948, he lives with her and their five

children at 5025 S. W. 74th Terrace, Miami, Florida.



